75 research outputs found

    Event-triggered near optimal adaptive control of interconnected systems

    Get PDF
    Increased interest in complex interconnected systems like smart-grid, cyber manufacturing have attracted researchers to develop optimal adaptive control schemes to elicit a desired performance when the complex system dynamics are uncertain. In this dissertation, motivated by the fact that aperiodic event sampling saves network resources while ensuring system stability, a suite of novel event-sampled distributed near-optimal adaptive control schemes are introduced for uncertain linear and affine nonlinear interconnected systems in a forward-in-time and online manner. First, a novel stochastic hybrid Q-learning scheme is proposed to generate optimal adaptive control law and to accelerate the learning process in the presence of random delays and packet losses resulting from the communication network for an uncertain linear interconnected system. Subsequently, a novel online reinforcement learning (RL) approach is proposed to solve the Hamilton-Jacobi-Bellman (HJB) equation by using neural networks (NNs) for generating distributed optimal control of nonlinear interconnected systems using state and output feedback. To relax the state vector measurements, distributed observers are introduced. Next, using RL, an improved NN learning rule is derived to solve the HJB equation for uncertain nonlinear interconnected systems with event-triggered feedback. Distributed NN identifiers are introduced both for approximating the uncertain nonlinear dynamics and to serve as a model for online exploration. Next, the control policy and the event-sampling errors are considered as non-cooperative players and a min-max optimization problem is formulated for linear and affine nonlinear systems by using zero-sum game approach for simultaneous optimization of both the control policy and the event based sampling instants. The net result is the development of optimal adaptive event-triggered control of uncertain dynamic systems --Abstract, page iv

    Cooperative Deep Q -Learning Framework for Environments Providing Image Feedback

    Get PDF
    In this article, we address two key challenges in deep reinforcement learning (DRL) setting, sample inefficiency, and slow learning, with a dual-neural network (NN)-driven learning approach. In the proposed approach, we use two deep NNs with independent initialization to robustly approximate the action-value function in the presence of image inputs. In particular, we develop a temporal difference (TD) error-driven learning (EDL) approach, where we introduce a set of linear transformations of the TD error to directly update the parameters of each layer in the deep NN. We demonstrate theoretically that the cost minimized by the EDL regime is an approximation of the empirical cost, and the approximation error reduces as learning progresses, irrespective of the size of the network. Using simulation analysis, we show that the proposed methods enable faster learning and convergence and require reduced buffer size (thereby increasing the sample efficiency)

    Knowledge-Infused Self Attention Transformers

    Full text link
    Transformer-based language models have achieved impressive success in various natural language processing tasks due to their ability to capture complex dependencies and contextual information using self-attention mechanisms. However, they are not without limitations. These limitations include hallucinations, where they produce incorrect outputs with high confidence, and alignment issues, where they generate unhelpful and unsafe outputs for human users. These limitations stem from the absence of implicit and missing context in the data alone. To address this, researchers have explored augmenting these models with external knowledge from knowledge graphs to provide the necessary additional context. However, the ad-hoc nature of existing methods makes it difficult to properly analyze the effects of knowledge infusion on the many moving parts or components of a transformer. This paper introduces a systematic method for infusing knowledge into different components of a transformer-based model. A modular framework is proposed to identify specific components within the transformer architecture, such as the self-attention mechanism, encoder layers, or the input embedding layer, where knowledge infusion can be applied. Additionally, extensive experiments are conducted on the General Language Understanding Evaluation (GLUE) benchmark tasks, and the findings are reported. This systematic approach aims to facilitate more principled approaches to incorporating knowledge into language model architectures.Comment: Accepted for publication at the Second Workshop on Knowledge Augmented Methods for NLP, colocated with KDD 202

    KSAT: Knowledge-infused Self Attention Transformer -- Integrating Multiple Domain-Specific Contexts

    Full text link
    Domain-specific language understanding requires integrating multiple pieces of relevant contextual information. For example, we see both suicide and depression-related behavior (multiple contexts) in the text ``I have a gun and feel pretty bad about my life, and it wouldn't be the worst thing if I didn't wake up tomorrow''. Domain specificity in self-attention architectures is handled by fine-tuning on excerpts from relevant domain specific resources (datasets and external knowledge - medical textbook chapters on mental health diagnosis related to suicide and depression). We propose a modified self-attention architecture Knowledge-infused Self Attention Transformer (KSAT) that achieves the integration of multiple domain-specific contexts through the use of external knowledge sources. KSAT introduces knowledge-guided biases in dedicated self-attention layers for each knowledge source to accomplish this. In addition, KSAT provides mechanics for controlling the trade-off between learning from data and learning from knowledge. Our quantitative and qualitative evaluations show that (1) the KSAT architecture provides novel human-understandable ways to precisely measure and visualize the contributions of the infused domain contexts, and (2) KSAT performs competitively with other knowledge-infused baselines and significantly outperforms baselines that use fine-tuning for domain-specific tasks
    • …
    corecore